Cellular Morphology and Immunologic Properties of Escherichia coli Treated with Antimicrobial Antisense Peptide Nucleic Acid

نویسندگان

  • Majid Sadeghizadeh
  • Abbas Nikravesh
  • Mehrdad Behmanesh
  • Liam Good
چکیده

Background & Objectives: Antisense peptide nucleic acids (PNA) that target growth essential genes show potent bactericidal properties without cell lysis. We considered the possibility that whether PNA treatment influence the bacteria total nucleic acids content and apply approach to develop a new delivery system to Dendritic cells (DCs). DCs are the most potent antigen presenting cells in the immune systems. Since the uptake of bacteria by DC is a necessary step for generation of effective DNA vaccine, we studied the uptake efficiency of PNA treated bacteria by DCs. Material & Methods: Total nucleic acids of antiacyl carrier protein (acpP) peptide-PNA treated Escherichia coli Hb101 containing plasmid have been isolated. In addition, peripheral blood monocytes have been purified using mouse anticluster of differentiated (CD14) coated magnetic beads and then culture in presence of growth factors. Generated DCs have been assessed for their ability of uptake of flurescein isothiocyanate (FITC) labeled peptide-PNA treated bacteria and heat inactivated by flow cytometry. Results: The preparation of total nucleic acid from peptide-PNA treated showed five distinct bands which correspond to chromosomal DNA, plasmid DNA, 23S ribosomal RNA (rRNA), 16S rRNA and mixture of small RNA. DCs incubated with FITClabeled peptide-PNA treated and heat inactivated bacteria showed almost equal fluoresence intensity. Conclusion: Peptide–PNA treatment bacteria are intact and do not appear to alter cell barriers and nucleic acid content. They can be taken up by DCs efficiently. These finding may confirm new application for peptide-PNA in immunology and DNA vaccine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular Morphology and Immunologic Properties of Escherichia coli Treated With Antimicrobial Antisense Peptide Nucleic Acid

  Background & Objectives: Antisense peptide nucleic acids (PNA) that target growth essential genes show potent bactericidal properties without cell lysis. We considered the possibility that whether PNA treatment influence the bacteria total nucleic acids content and apply approach to develop a new delivery system to Dendritic cells (DCs). DCs are the most potent antigen presenting cells in th...

متن کامل

Peptide nucleic acid (PNA) antisense effects in Escherichia coli.

Antisense peptide nucleic acid (PNA) can be used to control cell growth, gene expression and growth phenotypes in the bacteria Escherichia coli. PNAs targeted to the RNA components of the ribosome can inhibit translation and cell growth, and PNAs targeted to mRNA can limit gene expression with gene and sequence specificity. In an E. coli cell extract, efficient inhibition is observed when using...

متن کامل

Effect of Amino Acid Substitutions on Biological Activity of Antimicrobial Peptide: Design, Recombinant Production, and Biological Activity

Recently, antimicrobial peptides have been introduced as potent antibiotics with a wide rangeof antimicrobial activities. They have also exhibited other biological activities, including antiinflammatory,growth stimulating, and anti-cancer activities. In this study, an analog of MagaininII was designed and produced as a recombinant fusion protein. The designed sequence containe...

متن کامل

Competitive inhibition of natural antisense Sok-RNA interactions activates Hok-mediated cell killing in Escherichia coli

Short regulatory RNAs are widespread in bacteria, and many function through antisense recognition of mRNA. Among the best studied antisense transcripts are RNA antitoxins that repress toxin mRNA translation. The hok/sok locus of plasmid R1 from Escherichia coli is an established model for RNA antitoxin action. Base-pairing between hok mRNA and Sok-antisense-RNA increases plasmid maintenance thr...

متن کامل

Effect of Amino Acid Substitutions on Biological Activity of Antimicrobial Peptide: Design, Recombinant Production, and Biological Activity

Recently, antimicrobial peptides have been introduced as potent antibiotics with a wide rangeof antimicrobial activities. They have also exhibited other biological activities, including antiinflammatory,growth stimulating, and anti-cancer activities. In this study, an analog of MagaininII was designed and produced as a recombinant fusion protein. The designed sequence containe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014